Pronađeno: 1-10 / 19 radova

Autori: Loncar Vladimir

>> Filter: Samo Article i Review

Naslov Low latency transformer inference on FPGAs for physics applications with hls4ml (Article)
Autori Jiang Zhixing  Yin Dennis  Chen Yihui  Khoda Elham E  Hauck Scott  Hsu Shih Chieh  Govorkova Ekaterina  Harris Philip  Loncar Vladimir  Moreno Eric A 
Info JOURNAL OF INSTRUMENTATION, (2025), vol. 20 br. 4, str. -
Ispravka ISI/Web of Science   Članak   Elečas   Rang časopisa  
Naslov SymbolNet: neural symbolic regression with adaptive dynamic pruning for compression (Article)
Autori Tsoi Ho Fung  Loncar Vladimir  Dasu Sridhara  Harris Philip 
Info MACHINE LEARNING-SCIENCE AND TECHNOLOGY, (2025), vol. 6 br. 1, str. -
Projekat High Energy Physicshttp://dx.doi.org/10.13039/100006208 [DE-SC0017647]; U S Department of Energy [A3D3]; NSF Institute for Accelerated AI Algorithms for Data-Driven Discovery [PHY-2117997]; NSF [PHY-2019786]; Institute for Artificial Intelligence and Fundamental Interactions (IAIFI), under the NSF
Ispravka ISI/Web of Science   Članak   Elečas   Rang časopisa  
Naslov Ultrafast jet classification at the HL-LHC (Article)
Autori Odagiu Patrick  ...  Loncar Vladimir  ...  (broj koautora 16) 
Info MACHINE LEARNING-SCIENCE AND TECHNOLOGY, (2024), vol. 5 br. 3, str. -
Projekat NSF; Swiss National Science Foundation [PZ00P2_201594]; European Research Council (ERC) under the European Union [966696]; U.S. Department of Energy (DOE), Office of Science, Office of High Energy Physics Early Career Research program [DE-SC0021187]; CAPES; CNPq; FAPERJ; Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) [EXC 2121, 390833306]; Fermi Research Alliance, LLC [DE-AC02-07CH11359]; Department of Energy (DOE), Office of Science, Office of High Energy Physics; U.S. Department of Energy (DOE), Office of Science, Office of High Energy Physics 'Designing efficient edge AI with physics phenomena' Project [DE-FOA-0002705]; United Kingdom EPSRC [EP/V028251/1, EP/L016796/1, EP/N031768/1, EP/P010040/1, EP/S030069/1]
Ispravka ISI/Web of Science   Članak   Elečas   Rang časopisa  
Naslov Symbolic Regression on FPGAs for Fast Machine Learning Inference (Proceedings Paper)
Autori Tsoi Ho Fung  Pol Adrian Alan  Loncar Vladimir  Govorkova Ekaterina  Cranmer Miles  Dasu Sridhara  Elmer Peter  Harris Philip  Ojalvo Isobel  Pierini Maurizio 
Info 26TH INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS, CHEP 2023, (2024), vol. 295 br. , str. -
Projekat U.S. Department of Energy [DE-SC0017647]; Eric and Wendy Schmidt Transformative Technology Fund [A3D3, NSF 2117997]; European Research Council (ERC) under the European Union [772369]
Ispravka ISI/Web of Science   Članak   Elečas  
Naslov FPGA Resource-aware Structured Pruning for Real-Time Neural Networks (Proceedings Paper)
Autori Ramhorst Benjamin  Loncar Vladimir  Constantinides George A 
Info 2023 INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE TECHNOLOGY, ICFPT, (2023), vol. br. , str. 282-283
Projekat Engineering and Physical Sciences Research Council (EPSRC) [EP/S030069/1]; NSF Institute [A3D3]; NSF [2117997]
Ispravka ISI/Web of Science   Članak  
Naslov Real-time semantic segmentation on FPGAs for autonomous vehicles with hls4ml (Article)
Autori Ghielmetti Nicolo  Loncar Vladimir  Pierini Maurizio  Roed Marcel  Summers Sioni  Aarrestad Thea  Petersson Christoffer  Linander Hampus  Ngadiuba Jennifer  Lin Kelvin  Harris Philip 
Info MACHINE LEARNING-SCIENCE AND TECHNOLOGY, (2022), vol. 3 br. 4, str. -
Projekat European Research Council (ERC) [772369, 966696]
Ispravka ISI/Web of Science   Članak   Elečas   Rang časopisa   Citati: ISI/Web of Science   Scopus  
Naslov Lightweight jet reconstruction and identification as an object detection task (Article)
Autori Pol Adrian Alan  Aarrestad Thea  Govorkova Ekaterina  Halily Roi  Klempner Anat  Kopetz Tal  Loncar Vladimir  Ngadiuba Jennifer  Pierini Maurizio  Sirkin Olya  Summers Sioni 
Info MACHINE LEARNING-SCIENCE AND TECHNOLOGY, (2022), vol. 3 br. 2, str. -
Projekat European Research Council (ERC) under the European Union [772369]; CEVA under the CERN Knowledge Transfer Group
Ispravka ISI/Web of Science   Članak   Elečas   Rang časopisa   Citati: ISI/Web of Science   Scopus  
Naslov Autoencoders on field-programmable gate arrays for real-time, unsupervised new physics detection at 40 MHz at the Large Hadron Collider (Article)
Autori Govorkova Ekaterina  Puljak Ema  Aarrestad Thea  James Thomas  Loncar Vladimir  Pierini Maurizio  Pol Adrian Alan  Ghielmetti Nicolo  Graczyk Maksymilian  Summers Sioni  Ngadiuba Jennifer  Nguyen Thong Q  Duarte Javier  Wu Zhenbin 
Info NATURE MACHINE INTELLIGENCE, (2022), vol. 4 br. 2, str. 154-+
Projekat European Research Council (ERC) under the European UnionEuropean Research Council (ERC) [772369]; ERC-POC programme [996696]
Ispravka ISI/Web of Science   Članak   Elečas   Rang časopisa   Citati: ISI/Web of Science  
Naslov A Reconfigurable Neural Network ASIC for Detector Front-End Data Compression at the HL-LHC (Article)
Autori Di Guglielmo Giuseppe  ...  Loncar Vladimir  ...  (broj koautora 18) 
Info IEEE TRANSACTIONS ON NUCLEAR SCIENCE, (2021), vol. 68 br. 8, str. 2179-2186
Projekat Fermi Research Alliance, LLC through the U.S. Department of Energy (DOE), Office of Science, Office of High Energy Physics [DE-AC02-07CH11359]; DOE, Office of Science, Office of High Energy Physics Early Career Research ProgramUnited States Department of
Ispravka ISI/Web of Science   Članak   Elečas   Rang časopisa   Citati: ISI/Web of Science   Scopus  
Naslov Fast convolutional neural networks on FPGAs with hls4ml (Article)
Autori Aarrestad Thea  Loncar Vladimir  ...  (broj koautora 20) 
Info MACHINE LEARNING-SCIENCE AND TECHNOLOGY, (2021), vol. 2 br. 4, str. -
Projekat European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program [772369]; Fermi Research Alliance, LLC [DE-AC02-07CH11359]; U.S. Department of Energy (DOE), Office of Science, Office of High Energy Physics; Massachusetts Institute of Technology University; National Science Foundation [1606321, 115164]; DOE, Office of Science, Office of High Energy Physics Early Career Research program [DE-SC0021187]
Ispravka ISI/Web of Science   Članak   Elečas   Rang časopisa   Citati: ISI/Web of Science  
  • 1
  • 2
Ispis zapisa u formatu:TXT | BibTeX